Origins of Magnetic Field

<u>gins of Magnetic Field</u>		U8P1a	
• Whenever a system p	ossesses charge, it will ob	oviously cause an	to
come into existence	around it.		
○ Surprisingly, if a	system or	particle within a system h	as a
relative velocity a		_ will come into existence around it. T	his field
will exert a force on	any charged particle with	nin a system even if the system as a who	ole is
electrically	However, the char	ged particle must cross field lines to	

experience a magnetic force so only the motion component counts.

(Note: In truth, magnetic fields don't appear and disappear with velocity, there is actually one electromagnetic field surrounding a charge particle. Another charged particle experiences this electromagnetic field differently based on how it moves through the field, the concept of magnetism only exists because people original thought it was something completely different from electricity – which is reasonable to believe since neutral objects can be magnetic and/or experience magnetism due to the invisible microscopic motions of charge particles within them.)

Right Hand Rule Finding a Single B-Field (charge, loop, solenoid)

• A moving test- creates a spherical B-field

that wraps clockwise around the axis of motion.

• With a line of _____ the spheres superimpose to create a rotating ______ shape.

Right Hand Rule Finding the Force Created by an External B-Field

• When a positive test charge ______ through magnetic field of object, it experiences a

• The strength of this force is F_B = where θ is the angle between the charge's velocity and the external B-field lines. Note: no force will be felt if

_____ or _____

Mass Spectrometer

• A is a device used to measure the of ions. It uses a

combination of ______ and _____ force to select ions with a specific velocity.

Then it uses a combination of ______ and _____ force to measure the ion's _____.

Magnetic Force on a Wire

- $F_B = _$ = ____ → For short wires • A near infinite wire, like a _____, experiences a total force near . But, the longer the power line the poles are used to hold it. This creates a counter force that is also . So, total force doesn't tell what happens to the line. We must use force _____. A pole only needs to be strong enough to resist the _____ and _____ forces acting on the part of the line that pole is responsible for supporting. • Force per meter = _____ = ____ \rightarrow for _____ wires Motion of an Ion in B- and E-fields • Since F_B is always _____ to v and B, charged particles moving perpendicular to a _____ will go in a perfect circle. NOTE: If v is not to B-field, only the component is bent into a , the component is unaffected. This results in a _____ shape (and is the reason you see the aurora borealis near Earth's). \circ Since F_E is always _____ to E, charged particles move in a ______ shape from an E-field. **Permanent Magnets** have a field (). 0 • The field comes from "circular" motion of _____ around the atom _____. \circ There is always a and . o or repel, but attracts. • Temporary Magnets (two ways) • Have a -field only when near B-field. (i.e.) • Since orbiting create B-fields in permanent magnets, an through a can also create a B-field. Non-magnetic Material Ignores ______. Meaning it ______ feel magnetic forces and it ____alter the direction of _____. For example, magnetic attract each other with air separating then compared to wood
 - separating them (assuming equal separations).