Cha	<u>rge</u>	U7P1a
0	Atoms of matter are made of with charge,	
-	with charge, and with charge.	
0	>99% of atomic mass is and found in the	
-	of the mass is electrons in the	
0	On Earth, all positive charge comes from and all	
ľ	negative charge from	
0	If able to move freely, like charges (,) will	
e	each other; unlike charges (,) will (Fortunately for us,	if positive charge are
ľ	bushed really close together another force called the nuclear force becomes even stronger th	an the repulsion. So,
8	toms like those in our bodies can be made, but only with really high pressures (center of).
<u>Con</u>	ductors, insulators and semi-conductors	
(are made of atoms that hold tightly to their electrons (i.e.	,)
(are made of atoms that share electrons freely (i.e	,).
(can behave like either or	_ depending on
	added impurities and external voltages (i.e)	
((Note: Free moving electrons are good at transferring KE to neighboring	atoms, so good
	electrical conductors are also good conductors. This is why	is used
	for pots and wires, but is used for pot and wire)
Mov	ving Charge	
(The SI unit for charge is the A proton has a charge of 1.6	x 10 ⁻¹⁹ C
	or +1 <i>e</i> (elementary charge). An electron has a charge of or	·
(• A static shock like when	is
	a couple microcoulombs. A transfers about a dozen Cou	lombs of
	charge. (Even in this case <0.01% of the atoms involved have unbalances protons/electric	cons.)
	Small amounts of unbalance charge have much effects than sr	nall
	amounts of mass, and nature "works hard" to get charges to	
(There are two basic ways to separate/unbalance charges: high voltages ar	nd
	friction. For simplicity and safety, we will use	
(When two objects rub together, each holds on to its with	L
	different strengths. Materials that easily loose become	
	charged after being rubbed.	
(There NO easy way to tell which object is negative and which is positive	after
	friction, but determining relative charges:	r
	/ can be determined.	

Elect	<u>ric Quantitie</u>	S				U7P1b
0	Electric	push/pull of	f	_ on other _		
		=()=(), k=			
	\circ $F_{\rm E} < 0$	when			_(means _).
	\circ $F_E > 0$	when			_(means _).
0	Electric	- the expected	dpe	r amount of		that can be felt in
a	region of spa	ce=	_=()			
0	Electric		the ability to	do	in the fut	ture because of the
		of charges compared	l to each other (also, the am	ount of	that was lost to get
th	e charges to t	heir positions=	==	()		
0	Electric	(a.k.a) - th	e expected		_ per amount of
		_ that can be gained g	going between t	wo points.		

Comparing gravity to electricity – (Force, Field, PE, Voltage)

Drawing Electric Fields o E-Fields are useful because they let you predict =)	U7P1c and therefore (by
• But, the only way to measure E-field strength is to measure	first
and then divide by the size of the that is getting /	. We call a
charge that is used to determine a test charge.	
• Test charges, by convention, are chosen to be . A test	charge, by necessity,
should be small enough so that is doesn't create a large of	its own that would
distort the E-field you are trying to measure. (Note: To measure Earth	's gravity field you can
use something small compared to Earth like a , but not	
.)	
• There are rules to drawing E-fields.	
1. E-fields point the direction a test charge would be	
The direction is therefore positive	
charges and negative charges.) Also, two field	
lines can never	
2. Denser packed field lines mean	
field strength.	
3. Where E-fields from multiple charged objects	
overlap, the field from one object	
the field of another object, but direction must	
be	
4. Charges inside neutral conductors will be	
pushed around until the field they create	
the external field.	
 E-field in conductors equals 	
 E-field at conductor's surface points 	
to surface.	
5. Extra like charges inside a charged conductor	
always move each other.	-
• Excess charge moves to the of a	
conductor.	
 Sharp corners have charge density 	
than smooth areas (think rod).	

Electric Potential Energy and Electric Potential ()	U7P1d
• Conservation of tells us that if a conservative force (i.e,	,
etc.) slows an object down then must be changing into an amount of	··
• If a test charge (, charge) is shot at a large, positive charge, i	t will feel a
and lose and gain	•
* PE _{Ei} and PE _{Ef} typically equal zero at different zero can be chosen, however, because that matters.	A ti is really
 Like electric field is and lets you predict wh 	at would
happen to the of a test charge if put in a location; voltage ()
is and lets you what how much	a test
charge would gain from an electric field when moving between two	
\circ Since PE _E does the same job as gravitational, it can be visualized like a	·
Places at the same around a hill have the same PEg. Places at the same _	
around a hill of PE_E or hill of have the same and form a line of	
1. Positive charges KE following a Field line, but neither gain nor loose KH	E going
to a Field line, because field shows direction of	
2. Since lines of equipotential show where PE_E is constant and therefore KE is	,
field lines and lines of equipotential are always	

Plane Geometry	F_E	Е	PE _E	V
F _E				
Е				
PE _E				
V				

<u>Capacitors</u>	U7P1e
• At its simplest, a is made of to,	plates
separated by an like	
• When a DC voltage source (i.e) is attached to	a,
flow from one plate to the terminal (end) of the battery	and from the
to the other plate.	
• At first, it is to move electrons (-e), but as more	
are added to the negative plate new -e feel an	
force. Similarly, it gets to remove	
-e from the plate because they feel an	
force.	
• Greater the plate area is to stuff more e- on.	
(space to spread out). So, capacitance = α	
\circ The closer the plates are together, the the E-field from	
one plate pulls on charges of the other plate. So, C α	
• So, C α = where ε_0 (the dielectric constant for) =
 Also, to have a good capacitance means to be able to hold 	of charge using a
battery (). So, also equals C=	
<u>Combining Capacitors in Series</u>	
• Capacitors on the wire are in	
\circ When a battery removes an -e from C ₃ and adds an	
to, the charges in the all the other plates rebalance. So,	, the total unbalance charge
collected in each capacitor is q from bat =	<u> </u> .
 Since the battery is the only source it provides 	to the charges, which
is used up in the capacitors (which gain). So, $V_{\text{from bat}} =$	
 Combining these rules with C=yields= 	
<u>Combining Capacitors in Parallel</u> C _{series} =	
• Capacitors on branches of a wire are in	
if the "tops" of the capacitors have the same	
as each other, and the bottoms have the same	
as each other. This also means $V_{bat} =$	
• Since charge from the battery has multiple to	
choose from. q _{bat} =	
\circ rieiding So, C_{\parallel} =	