<u>1st</u> Law of Thermodynamics (Heat Engine)

- The "purpose" of the ______ is to explain changes to the energy contained within an object, called ______ energy. Technically, internal energy includes many things: chemical, nuclear, etc. energy. For our purposes internal energy, however, it is a synonym for ______ energy. The two ways to add/remove thermal energy from an object is to apply a source/sink of organized motion energy (_____) or apply a _____/ of _____ motion energy (_____). So, change in internal energy = $\Delta U = __+ + ____$.
- The 1st Law of Thermodynamics fixes the "problem" of explaining where the energy goes in an collision. The energy goes ______ and makes the object _____.

Internal Combustion Engine (Heat Engine)

Motion Revisited

0	The 1 st Law of Thermodynamics is based on the Law of Conservation of In				
	we can now rewrite this law as	=	This		
	means that changes in motion can cause	of an object to change	. It also means,		
adding heat to a system can be used to change an object's					
Han	nmer and Nail L	ocomotive			

 In real life, not all the energy released from burning gasoline is actually transformed into _____. Efficiency measures energy ______ vs _____ energy supplied. A 20% efficiency means that for every 10J of input _____ is actually completely wasted.
More Realistic Locomotive

2 nd Law of Thermodynamics (Entropy)			U4P2b
0	Entropy measures the amount of	in a system. The	states, "Entropy
	of an isolated system always	with time." A practical result of	of the 2 nd Law of
	Thermodynamics is that (motion) is always crea	ted during an energy
	transfer so efficiency (= /) of any "motor/generator"	must 100%.
Pow	ver Transmission		

NOTE:

The 2 nd Law of Thermodynamics is a law of statistics. Gravitation is a law of nature. If your				
mass is 100kg and you're on Earth, then your weight is Nothing else is possible.				
In contrast, if you shuffle a deck of cards, most likely the cards will seem If				
they came out ordered by suit from ace to king, you would assume the shuffler .				
Similarly, the natural law of energy conservation says, if the pencil you are holding starts at a				
room temperature and no energy is added/removed, then its temperature will				
The 2 nd law of thermodynamics adds that it is <i>most likely</i> true that the pencil will be				
temperature everywhere. Technically, though, random atomic collisions could temporarily result in				
a lot more vibration on one side of the pencil than the other. Still, we don't live in fear that one side				
of our pencil will suddenly while the other side				

Identifying Increases/Decreases in Entropy (Disorder)

Entropy increases if	ntropy	increases	if
----------------------	--------	-----------	----

Examples

*** more	
(the challenge is	
)
- higher	
(be careful of	
·)
- no er	nergy source
is required.	
(be careful of	
·)
on th	a number of estacorias
	e number of categories.
(be careful of	
)