<u>Con</u>	uservation of Momentum When two objects push on each other the force of	U3P3a
0	the (Law).	u
0	The time A B is the time	
0	Impulse = = So, adding subscripts for objects A and B we s	see that
	=	
	Most Important Form =	
	=€=	
	=	
0	In other words, since $I_{A \text{ on } B}$ $I_{B \text{ on } A}$. The momentum lost when obj	ect A slows down in a
	collision the momentum when object	·
Defi	ining A System	
0	A closed system is one that mass is For example, a pick	up
	driving on a sunny day, but not,	
	unless the system is and	
0	An isolated system is one for which the net force acting on the system is	
	, i.e. a car driving with a constant velocity, but not	
	, unless the system is and	
0	Momentum and Energy are only conserved in systems that are	_
	(or sufficiently close to it). So, the trick to	
	applying these laws is to make the system large enough to be	_
	, but small enough to be	
0	Since it takes time for small forces to cause to change, all	
	collisions (for this level of Physics) are automatically	
Coll ○	lision Examples Partially inelastic (most collisions)	

• Perfectly inelastic (when objects _____)

• Explosion (when objects _____)

Partially Inelastic

U3P3b

Characteristics

Heat(sound/light/etc.)

Equations

Evolving Systems and E/p Conservation

Kinetic pendulum – A dart is thrown at a block hanging from the ceiling so that it strikes the block while traveling horizontally with a velocity of 8 m/s. To what height will the block rise after the dart sticks into it if the block's mass is 4 times greater than the dart's?