- When two objects push on each other the force of \qquad on \qquad is \qquad to
the \qquad (\qquad Law).
- The time A \qquad B is \qquad the time \qquad .
- Impulse = \qquad $=$ \qquad . So, adding subscripts for objects A and B we see that
Most Important Form
\qquad $=$ \qquad
\qquad $=$ \qquad \leftarrow
\qquad $=$ \qquad
\qquad $=$ \qquad
\qquad $=$ \qquad
- In other words, since $\mathrm{I}_{\mathrm{A} \text { on } \mathrm{B}} \quad \mathrm{I}_{\mathrm{B} \text { on } \mathrm{A}}$. The momentum lost when object A slows down in a collision \qquad the momentum \qquad when object \qquad .

Defining A System

- A closed system is one that mass is \qquad . For example, a pickup driving on a sunny day, but not \qquad _, unless the system is \qquad and \qquad _.
- An isolated system is one for which the net force acting on the system is
\qquad , i.e. a car driving with a constant velocity, but not \qquad
\qquad , unless the system is \qquad and \qquad .
- Momentum and Energy are only conserved in systems that are \qquad
\qquad (or sufficiently close to it). So, the trick to applying these laws is to make the system large enough to be \qquad
\qquad , but small enough to be \qquad _.
- Since it takes time for small forces to cause ___ to change, all collisions (for this level of Physics) are automatically \qquad
Collision Examples
- Partially inelastic (most collisions)
- Perfectly inelastic (when objects \qquad _)
- Explosion (when objects \qquad)

Equations

Evolving Systems and E/p Conservation

Kinetic pendulum - A dart is thrown at a block hanging from the ceiling so that it strikes the block while traveling horizontally with a velocity of $8 \mathrm{~m} / \mathrm{s}$. To what height will the block rise after the dart sticks into it if the block's mass is 4 times greater than the dart's?

