Energy and Work U3P1a • Energy is the ability of an object to accomplish a _____. Work is the process of transferring ______ from one _____ to _____. 0 In order for an object (i.e. fly swatter) to accomplish a job (_____), the object 0 must have ______. And, to have energy, the object must have ______ and _____. Ergo, the only "true" form of energy is the energy of _____, called _____ (___).

- 0 0
 - So, work must really be the transferring of ______ from one object to another
 - (______). Work done on the squatter is ______, because the speed of the fly squatter _____, while work done on the fly is _____, because the speed of the fly's exoskeleton
 - _____. (Note: Sound and heat energy are also released. So, $|\Delta KE_{swatter}|$ ____ $|\Delta KE_{fly}|$.)
- For the squatter and fly system the total change in energy = _____. Energy is _____.

Work Quirks

- Only forces that are parallel to the _____/ ____ can do work. So,
 - 1. Normal force does work, except in an .
 - 2. Frictional force usually does ______ work when it causes an object to _____, but can do _____ work if it is used to make an object _____.
 - 3. Centripetal force ______ does work, because it is ______ to the motion.

Work Example

A 0.5kg ball is thrown into the air with an initial velocity of 20 m/s.

- 1. What is the starting KE of the ball?
- 2. What is the ball's KE at the top of its arc?
- 3. What is the ball's KE when it reaches the ground again?
- 4. What is work is done by gravity on the ball going up? Going down?
- 5. When does a force do positive vs. negative work?
- 6. What height does the ball rise to?
- 7. At the top of its arc, what amount of energy can gravity potentially give to the ball?

Power

- Power is rate that ______ is transferred. Thus, its equation is _____, but looking at units gives this alternative equation: _____.
- Note: Because the definition of power equation deals with a largish period of ______, it can 0 only be used to measure ______ power. The corollary equation has time built into _____, though, so it can calculate all five flavors of power (______) Just make certain that the type of _____ matches the type of _____.

Work and Power Graphs

U3P1b

On a	VS	_graph,	On a	VS	graph,
work is	, because F is the	,	power is	_, because	is,
d is the	, and =	=	is	, and	=

Inversely,

Examples:

omentum and Impulse			U3P1c
tells how difficult	it is to bring a mov	ing object to a	·
is the	of momentum from one object to		
Impulse is transferred over	_ by applying a	to an object.	So, the formula is
In units this is	=	=	Yielding the
alternative formula			
Based on this formula, if an object st	tarts with zero velo	city, then its total mor	mentum ==
Momentum comes in 5 flavors:			
A big difference between energy and	d momentum is that	v in momentum is	
So, momentum is poss	sible. In other word	ds, energy is a	, while
momentum is a – so	00	counts.	
s. t <u>Graphs</u>			

<u>Comparing W, E, I, and ρ</u>