- Energy is the ability of an object to accomplish a \qquad .
- Work is the process of transferring \qquad from one \qquad to \qquad _.
- In order for an object (i.e. fly swatter) to accomplish a job (\qquad), the object must have \qquad And, to have energy, the object must have \qquad and \qquad _.
- Ergo, the only "true" form of energy is the energy of \qquad , called \qquad (\qquad
- So, work must really be the transferring of \qquad from one object to another
\qquad $=$ \qquad). Work done on the squatter is \qquad , because the speed of the fly squatter
\qquad , while work done on the fly is \qquad , because the speed of the fly's exoskeleton \ldots. (Note: Sound and heat energy are also released. So, $\left|\Delta \mathrm{KE}_{\text {swatter }}\right| \ldots\left|\Delta \mathrm{KE}_{\text {fly }}\right|$. .)
- For the squatter and fly system the total change in energy = \qquad . Energy is \qquad .

Work Quirks

- Only forces that are parallel to the \qquad 1 \qquad can do work. So,

1. Normal force \qquad does work, except in an \qquad .
2. Frictional force usually does \qquad work when it causes an object to \qquad , but can do \qquad work if it is used to make an object \qquad .
3. Centripetal force \qquad does work, because it is \qquad to the motion.

Work Example

A 0.5 kg ball is thrown into the air with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$.

1. What is the starting KE of the ball?
2. What is the ball's KE at the top of its arc?
3. What is the ball's KE when it reaches the ground again?
4. What is work is done by gravity on the ball going up? Going down?
5. When does a force do positive vs. negative work?
6. What height does the ball rise to?
7. At the top of its arc, what amount of energy can gravity potentially give to the ball?

Power

- Power is rate that \qquad is transferred. Thus, its equation is \qquad $=$ \qquad but looking at units gives this alternative equation: \qquad .
- Note: Because the definition of power equation deals with a largish period of \qquad , it can only be used to measure \qquad power. The corollary equation has time built into \qquad , though, so it can calculate all five flavors of power (\qquad Just make certain that the type of \qquad matches the type of \qquad .

Work and Power Graphs

On a \qquad graph, work is \qquad , because F is the \qquad ,
d is the \qquad , and \qquad $=$ \qquad .

On a \qquad vs \qquad graph, power is \qquad , because \qquad is \qquad ,
$\ldots \quad$ is
is __, and \qquad $=$ \qquad .

Inversely,

Examples:

○ ___ tells how difficult it is to bring a moving object to a \qquad

- \qquad is the \qquad of momentum from one object to \qquad _.
- Impulse is transferred over \qquad by applying a \qquad to an object. So, the formula is
\qquad . In units this is \qquad $=$ \qquad $=$ \qquad . Yielding the alternative formula \qquad .
- Based on this formula, if an object starts with zero velocity, then its total momentum = \qquad $=$ \qquad
- Momentum comes in 5 flavors:
\qquad
- A big difference between energy and momentum is that v in momentum is \qquad . So, \qquad momentum is possible. In other words, energy is a \qquad , while momentum is a \qquad - so \qquad counts.

F vs. t Graphs

Comparing W, E, I, and ρ

