| Cen  | <u>tripetal Force</u>                                                         |                               | U2P3a                                             |
|------|-------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------|
| 0    | When the sum of all the force                                                 | s acting on an object create  | es motion, this sum is called                     |
|      | Co                                                                            | entripetal literally means to | wards the of a                                    |
|      | curve/ So, centrip                                                            | petal force,, points          | just like,                                        |
|      | This is because                                                               | causes                        | But, remember                                     |
|      | points inste                                                                  | ad.                           |                                                   |
| Circ | cular Motion Examples                                                         |                               |                                                   |
| 0    | WARNING: Centripetal force                                                    | e is a force, it is a         | So, you must                                      |
|      | always ask yourself, "Which                                                   | true forces are creating the  | motion?"                                          |
| 0    | Combining Newton's 2 <sup>nd</sup> Law () and Centripetal Acceleration (), we |                               | etal Acceleration (), we get that                 |
|      | ===                                                                           | = Since mass                  | s and $v^2$ are both scalars, this reaffirms that |
|      | ,, and have th                                                                | e same                        |                                                   |
| Turr | ning on a Road                                                                | Horizontal Sling              | Solid Wheel (Ferris)                              |

Vertical Sling

Banked Turn\*

Orbits (next page)

## <u>Orbits</u>

U2P3b



- Note: \_\_\_\_ disappears. So, with a satellite orbiting Earth, you can't solve for \_\_\_\_\_
- Note: Since speed is \_\_\_\_\_, v = \_\_\_\_ = \_\_\_\_, where T equals \_\_\_\_\_

## **Motion Revisited**

| Diagonal nuch on a how with friction |                                    | Car clowing while traveling downhill |
|--------------------------------------|------------------------------------|--------------------------------------|
|                                      | Diagonal push on a box with metion | Car slowing while travening downnin. |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |
|                                      |                                    |                                      |