• "Ideal" spring	gs obey	Law, posses	s no ai	nd generate no	and when
they are	or		. Real life meta	ll coil springs best m	atch the
	as	sumption prov	vided the spring	is not stretched or co	ompressed too far.
• Hooke's Law	states force is		1	to displacement from	equilibrium:
=,	where k tells ho	w difficult it is	s to	tl	ne spring (called
the	constant). Ec	uilibrium is tl	ne position the s	pring will	after being
stretched. Th	e negative sign i	s present beca	use the force alv	ways	When a
spring system	n is at equilibriun	n, either	= 0 N or =	= 0 N depending on p	roblem wording.
Warning: spring	problems have <u>tv</u>	<u>vo</u> possible eq	uilibrium points	S.	
1. If aske	ed, "What is the f	force of	wit	thin the spring?" the	n equilibrium is
the res	t position with n	o extra	hung fro	om the spring.	shad abject then
2. II aske	is from	estoring force	position with	acting on the atta	iched object, then
\sim The k	IS HOL	F vour object o	f interest is the	(case 1	
	ly uniference is in		~ 2	(case)) of the
t equilibrium	Stretched/at e	equilibrium	Stretched (with mass)	Graphing	<u>Springs</u>
lo muss)			(while intess)		
uantitative Exa	nples A 5kg mass i	s hung vertically fr	om a spring with k=2	200N/m.	
	1. When the it have	he spring is at equi	librium, what tension	i will	
	2. How fat	r is the spring stret	ched from its natural		
	3. If the st	retch is maintained	l, but the spring is rot	ated	
	will th	e block's accelerat	ion be when released		
	4. What if	the table has $\mu_{\rm K}=0$	0.2 and μ s=0.2?	equilibrium) = m	ation from lax, speed is
				and acceleration	n/ is
				Because -	when passing
				through equilibr	$\underline{(\Delta x = \),}$
				acceleration = _	and speed =
				·	

Tension and Its Effects Using Ropes/Strings The force inside of a string/rope that is pulled tight is called ______. Assuming the string has negligible mass, the ______ within a single string is ______ regardless of string ______ or _____, so long as no additional tangential forces act on any part of the middle of the string. Normal force always points ______ to a surface, so it ______ cause tension to be <u>un</u>even within a string. Note: It can cause tension to exist, though. Friction is always ______ to a surface, so it ______ cause <u>un</u>even tension.

Gravity acting on a mass attached to a string can create ______. If the mass is on an incline only the ______ creates tension. If the mass is accelerating, tension must ______ so that ____ = ____.

Knots Connecting Strings

Pulleys System

Ideal Atwood Machine

Atwood On An Incline

Universal Law of Gravity

0	The	Law of	applies	places, because it is				
0	$F_{G} =$							
	0	Where m is the	, M is the	, r is the				
		between the	_ of the &'s, a	and G is a	_ that is always true.			
0	So, why	do we have both F_G and _	? Well, if you s	spend your whole life o	on, then			
	,, and never change <i>significantly</i> . (Note: $r_{earth} = 6,378$ km and Mt. Everest <9km, so							
	even climbing to the top of Mt. Everest only changes r by%. Climbing the stairs at Keppel							
	has	measurable effect on)					
		г						