- Contact Force - a push/pull that happens at a \qquad or points
(i.e. football player on \qquad , rope on \qquad (a.k.a. \qquad), \qquad on ball, \qquad on floor (a.k.a. \qquad force)).
- Field Force - a \qquad that acts on \qquad atom of an object, including the atoms on the \qquad (i.e. \qquad force of Earth on student (a.k.a. \qquad),
\qquad force of magnet on a nail).
- Note: With a contact force you can point to a location where two objects are \qquad and say that that spot is where the \qquad is happening. Field forces, however, are sometimes called \qquad forces, because you can't see the spot that the push/pull is occurring.
Contact \qquad Contact \qquad Field \qquad Field \qquad
\qquad
\qquad
\qquad
\qquad

Naming Forces

- Force names always have three parts
- Agent - The physical thing that \qquad the force.
- Type - the \qquad of force that is being exerted.
- Push/Pull \qquad -- A \qquad force that doesn't have a special type.
- Gravity ___ or \qquad -- Force created by \qquad attracting \qquad .
- Normal \qquad or \qquad -- Force a surface exerts to prevent \qquad .
- Friction ___ -- Force of two \qquad rubbing against each other.
- Tension \qquad -- Force of a \qquad 1 \qquad on an object.
- Centripetal \qquad -- A net force that creates \qquad motion.
- Object - The physical thing that \qquad the force.
- When labeling forces on diagrams we must include an \qquad , because forces are \qquad Free Body Diagram (for \qquad
○ \qquad show only the \qquad that act \qquad an object/system.
- NOT the forces that the \qquad exerts on outside things.
- NOT the internal forces of the object on \qquad -
- FB-diagrams are useful for predicting \qquad , because of the equation \qquad .
- F in this equation is the \qquad of all the \qquad acting ___ the object. \qquad .

Boy Pulling Wagon

FB for the Wagon
FB for the Boy
FB for Boy and Wagon System
\qquad)

- When velocity is \qquad in both \qquad and \qquad , then the acceleration is
\qquad and the net force (a.k.a. \qquad of all the \qquad) add to \qquad .
- Note: if either \qquad or \qquad of velocity \qquad , then there is \qquad and therefore \qquad cannot be zero. So, Newton's $1^{\text {st }}$ \qquad apply.
Newton's 2 ${ }^{\text {nd }}$ Law ($=$ $=-$ $=$
- The vector sum of the forces \qquad an object causes \qquad . In fact, this is the only thing that causes \qquad to change. (Forces exerted by an object don't cause $\Delta \mathrm{v}$.)
- Note: For a certain amount of force, when mass is big, acceleration will be \qquad , and when mass is \qquad , acceleration will be \qquad . Ergo, it is easier to \qquad , \qquad , and \qquad a shopping cart if it is \qquad .
Newton's $3^{\text {rd }}$ Law \qquad - \qquad)
- When two objects \qquad on each other the force of A on B \qquad the force of
\qquad , but in the \qquad direction.
- These forces are called an \qquad pair.
- Note: Action-reaction does not help you predict \qquad that's the job of Newton's
\qquad Law, which is the forces of \qquad , , —, , _, \qquad , etc. acting \qquad the \qquad .

Apparent Weight vs. Weight vs. Normal Force

- Your \qquad is the gravitational attraction of the \qquad pulling on \qquad .
- Apparent means, "What we perceive to be true." So, your \qquad is the force that a bathroom scale reads.
- \qquad is the force a floor pushes with to prevent you from breaking through it.
- Note: Weight is a \qquad force. Normal force is a \qquad force. Apparent weight is a \qquad force.
- Note: If you fall out of an airplane you perceive yourself to be \qquad , even though (unfortunately) gravity is ___ you with full strength.
- Ergo, apparent weight \qquad weight.
- The more our bodies/legs have to work, the \qquad we feel. It is " \qquad " to you that you are \qquad when an elevator starts going \qquad , and \qquad as it stops. So, the harder the \qquad of the elevator pushes on us, the \qquad we feel.
- Ergo, apparent weight \qquad normal force.
- In an elevator, $\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{N}}$ (and apparent weight), if acceleration is \qquad and the net force is \qquad . So, the elevator is \qquad or \qquad .
- In an elevator, $\mathrm{Fg}_{\mathrm{g}}>\mathrm{F}_{\mathrm{N}}$ (and apparent weight), if acceleration is \qquad and the net force is \qquad . So, the elevator is going \qquad or going \qquad .
- In an elevator, $\mathrm{F}_{\mathrm{g}}<\mathrm{F}_{\mathrm{N}}$ (and apparent weight), if acceleration is \qquad and the net force is \qquad . So, the elevator is going \qquad or going \qquad .
- Notice: \qquad always agrees with \qquad and \qquad always equals \qquad .

Short
Name

Purpose

Force
Diagram

Watch

Out For

More Force Examples

Elevator

Big Man - Little Boy

○ \qquad tries to \qquad two objects from sliding/moving past each other. Frictions "goal" is to make all objects have the \qquad speed. (ie. road and \qquad -, airplane and \qquad , shoes and \qquad , etc.)

- The frictional force a road exerts on a car is \qquad the frictional force of the \qquad on the \qquad (a.k.a. Newton's \qquad Law).
- So, why does the car's velocity change more? Acceleration, a, is inversely proportional to \qquad (Newton's \qquad). The car's mass is miniscule compared to \qquad . So, the car's acceleration is much \qquad . Earth's acceleration exists but is too small to measure.
- Friction acts in a direction \qquad and \qquad to the sliding motion.
- We will be studying friction between a solid and a solid, ie. \qquad .
- In contrast, when friction is between a solid and a \qquad or \qquad it is called drag. The most common and most frequently ignore type of drag is \qquad
\qquad . The main reason we don't study drag is its complexity. Drag coefficients are multivariable equations that depend on \qquad and \qquad as well as other things.
- With solid on solid friction, however, the \qquad , μ, depends only on the \qquad of rubbing materials (i.e. the objects are \qquad and their \qquad).
- The formula kinetic friction when objects that are currently \qquad is \qquad Where F_{N} usually = \qquad , as long as the ground is \qquad and only \qquad acts vertically.
- This means $\mu=$ \qquad , which makes μ the ratio of the difficulty to \qquad an object vs. the difficulty to \qquad an object. Since, \qquad is usually easier, μ is usually \qquad 1. μ can be \qquad 1 if the surfaces are extremely \qquad , though.
- The formula static friction when objects that are currently \qquad is \qquad .
- The reason for the \qquad sign is that static friction only exists to the degree necessary to
\qquad motion. So, a F_{fs} for a block experiencing an F_{p} of 2 N is \qquad . So, a F_{fs} for a block experiencing an F_{p} of 0 N is \qquad . If the 0 N push block still had a $\mathrm{F}_{\text {fs }}$ of 2 N acting on it, then the block would \qquad the table all by itself.
- Special note, while we tend to think of friction as the force that makes moving objects \qquad , like a truck approaching a \qquad . Friction \qquad makes objects
speed up faster, like a truck in front of a \qquad .

Static Friction

Kinetic Friction

Motion \& Equation

Microscopic
Diagram

Watch out for

