What is Physics?

Notes: U1P1a

- The main goal of Physics is straight forward. It to describe \qquad that has happened in the universe's \qquad and \qquad that \qquad in the universe's \qquad . To achieve this lofty goal Physics focuses on two simple ideas:
 - which describes current positio
\circ
- which explains how \qquad evolves over time.
- The Physics believes if you can successfully understand and plot the course of every particle of matter throughout its existence, then you have achieved perfect knowledge for all time.

Math in Physics

- Let's be very clear. MATH IS \qquad PHYSICS. Math is \qquad even a science.
- Math is a condensed and precise \qquad for ideas. Learning the rules for Math is really learning \qquad (and about as much fun). For anyone who has fallen in love with a particular story, poem or song, however, you have experienced something similar to what a Mathematician or Physicist experiences with their proof that opens their eyes to a truth they never before realized.

Scientific Diagrams

A \qquad is a single \qquad used to clearly define the physical in terms of well demarcated \qquad . It is \qquad for homework problem. It is \qquad for \qquad lab report.

- Objects should be drawn well enough to be \qquad .
- Variables that occur at a \qquad instant in time are drawn exactly where they happen. Typical adjectives include: and \qquad .
- Variables that occur over an extended \qquad are drawn near the \qquad of the action and use a \qquad to
show where the variable starts and \qquad . Typical adjectives include: \qquad and \qquad .

Motion Graphs

\circ A
 is a series of pictures drawn at regular \qquad intervals. Its purpose is to show how \qquad changes. Objects can be drawn clearly or as single dots. -

Movement (Speed vs. Velocity)

- You have probably learned in a non-Physics
class that velocity is speed but with
\qquad . This is \qquad .
- Speed (a \qquad) is a change in \qquad compared to time.
- Velocity (a \qquad) is a change in \qquad compared to time.
- Speed and velocity only have the same value if you move \qquad or the period of time is very \qquad .

Average vs Instantaneous

○ \qquad variables take place over an infinitesimal amount of time.

- \qquad variables take place over a \qquad /measurable amount of time.
○ \qquad speed $=\mid$ \qquad velocity

Acceleration

- Velocity is the \qquad over the \qquad - a.k.a. the \qquad that
\qquad changes. As an equation $v_{\text {avg }}=$ \qquad .
- Acceleration is the \qquad over the \qquad - a.k.a. the \qquad that \qquad changes. As an equation $\mathrm{a}_{\text {avg }}=$ \qquad .
- Note: Acceleration does NOT mean, "To get \qquad ." \qquad change in ' v ' counts.
- Since velocity is a \qquad (not a scalar), there are two ways to get acceleration,
- Change the \qquad of velocity by \qquad . In a car this means to \qquad .
- Change the \qquad of the velocity, by \qquad . In a car this means to \qquad .
- In both cases, you can tell that \qquad is changing even if your eyes are \qquad .
(Note: Constant velocity \qquad be felt; otherwise traveling in an \qquad would hurt.)

Deceleration vs. Acceleration

- Deceleration means Velocity , not \qquad acceleration.
Acceleration Motion
- Free fall is how an object moves through the \qquad , so long as air \qquad 1 can be ignored (which is most of the time for our level of Physics).
- In this situation, on Earth, when an object is falling downward, its acceleration will be $9.8 \mathrm{~m} / \mathrm{s}^{2}$ pointing \qquad , because Earth's \qquad $=$ \qquad = \qquad .
- When an object is rising upward, $\mathrm{a}=$ \qquad , because \qquad causes the acceleration.
- When an object is at the top of its motion, $\mathrm{a}=$ \qquad , because \qquad .
Suppose and arrow is fired upward with an initial velocity of $30 \mathrm{~m} / \mathrm{s}$. How will it move?
t

d-t, v-t, a-t Graphs and Three Main Types of Motion

Constant \qquad

Constant \qquad

Constant \qquad

