<u>SI U</u>	<u>Units</u>	Ν	lotes: U0a
0	Fundamental Units (for *mks* system which	ch used for "everyday" sized objects)	
	• ** Length –	• Counting Amount –	
	• ** Mass –	Electric Current –	_
	• ** Time –	• Amount of Light –	
	• Temperature –		
0	Derived Units (units based on	units)	
(• Speed (Velocity) –	• Electrical Power –	
(• Force (Weight) –		
Sign Whe cont mea desc o	nincant Figures (**Generally, homework sh en a scientist makes a, he r text. Both that tool and the asurement can be made. When the digits are r cribe actual reality and are said to be Thus, sig. fig. exists to tell a reader how mu	mould be 3 sig. fig.) must use a within a particular p impose a limit to how precisely read from the tool, only those that are uch a measurement can be	physical the
0	It matters for real life applications ()
0	Sig. fig. is often NOT relevant to "math prol	bblems," because "math" is not	If, a person
	wishes to describe, though, sig.	g. fig be used.	
0	Mr. Carr's rule – Keep digits that carry usef	ful information (aka eliminate 50% of optic	ons).
	$23.27g \pm 0.01g$ <u>4</u> sig. fig.	$23.27g \pm 0.07g$ sig. fig	
	$23.27g \pm 0.02g$ sig. fig.	$23.27g \pm 0.2g$ sig. fig.	
	$23.27g \pm 0.04g$ sig. fig.	$23.27g \pm 0.4g$ sig. fig.	
0	Scientists use sig. fig. notation. Ins	istead, they calculate the \pm to avoid	
0	In calculations, the final results precision is	always limited by the "worst" input measured	urement.
	\circ For multiplication/division the "we	vorst" measurement is the one with the few	est digits.
	\circ For addition/subtraction it is the or	one with the largest absolute \pm value.	
	Velocity = displacement/time = 10.000m / 6	$6.0s = 1.666666666666 \text{ m/s} = __\ \text{m/s}$	
Bill	Gates wealth + Mr. Carr's wealth =		
Vec	 ctors and Vector Addition Vectors are mathematical objects that post 	ssess both	
	and As a res	esult of the	
	, adding them is trickier than	in adding	
	·		
(For graphical addition, always shift/ 	the	
	vectors so they line up head to tail. The su	um goes	
	from the 1^{st} to the last		

Trigonometric vector addition requires using, ____, or ____ to find the x-y-components. Then, use integer addition (w/direction) on the x's and y's separately. Then, the _____ Theorem to get magnitude and _____ to get direction. (AP topic)

Acc	uracy ar	nd Precision (,,	, etc. are NOT sci	entific errors)
0		is how close yo	u are to the va	llue (or "god" value)	
0		errors are crea	ted by systematic () issues.	
	0	Faulty	or uncalibrated		
	0	Consistent	error		
0		errors are wh	at gives data a	of values even when	
you are being					
	0	limits of the	device		
	0	irregularity of the	being		
	0	inconsistent	error		
			$))(\bigcirc)$		

Variables

0	: Chosen not to change
0	: Changed on purpose by experimenter to cause an effect
0	 : Are effected because of the change to the independent variable.

Experiment: Completely Melting 1kg of Ice in an Oven

type of pan holding ice	Oven temperature
Time	starting amount of ice

Variable Relationships

Shape	Slope	Formula	Name
2		y =	
		y =	
		y =	
		y =	
		y =	
-			

Scientific Method

1. a. Provides a ______ for the experiment.b. Forces you to be ______ about what you are interested in learning. 2. ____ a. You should have a ______ to believe it is _____. b. It must be specific enough to possibly be _____. c. Guides you in how to ______your investigation. 3. ______ a. It tests your ______.b. It must be ______ or other scientists ______. 5. _____ a. It determines to what degree you can your results. Scientific Laws are usually written as ______ connecting ______ variables to ______ variables. They give no ______ for why the equation is true. Theories ______ why something is true. To be a scientific theory, the explanation 0 must be "well-tested", meaning... • Based on _____ experiments that are _____ from each other and have been _____ by many other scientists. • As a result, scientific theories are _____ completely wrong. • However, new technology sometimes forces theories to be _____.

Dimensional Analysis (a.k.a. tracking units)	
--	--

Dimensional analysis is a tool that can be used a variety of ways. At its simplest it can be used to find the ______ units that a ______ units is made from or to check for ______ errors in a calculation.

Notes: U0d

• More powerfully, _____ can allow you to rebuild partially forgotten or even discover new _____ (a.k.a. relationships between physical quantities) that *could* be _____. $F = m (v/r^2)$ versus $F = m (v^2/r)$

Data Handling and Display

Data Table		Spreadsheet	
Pro		Pro	
Con		Con	
Chart/ size of different	 Shows how the compare to each 	Graph – Shows the relationship betw two Looking in between two	een
other. Looking in between two tells you	o measured pointsinfo.	measured points tells you ii	nto.

 $\underline{\qquad} Chart-Used only when all the measured categories total to \underline{\qquad}\%.$