$a=\frac{\Delta v}{\Delta t} \quad \frac{\text { meters }}{\sec o n d^{2}}=\frac{m}{s^{2}}$
Acceleration measures how quickly velocity changes in magnitude and/or direction. It is a vector (direction matters).
You feel accelerations.
Acceleration is the slope of a velocity vs. time graph.

$$
\begin{gathered}
\rho_{i}=\rho_{f} \\
m_{1 i} v_{1 i}+m_{2 i} v_{2 i}=m_{1 f} v_{1 f}+m_{2 f} v_{2 f}
\end{gathered}
$$

Momentum is a vector, so opposite directions cancel.

Momentum is always conserved, even in inelastic collisions (with heat, sticking together, deformation, etc.), ie. car crashes, ice skaters pushing off, guns firing, play-dough collisions.

$$
v=v_{o}+a t_{v=\frac{\Delta x}{\Delta t}}^{\frac{\text { meters }}{\sec \text { ond }}=\frac{m}{s}}
$$

Velocity is the vector change in displacement (either magnitude or direction).
Speed is the scalar change in distance (never negative).
You don't feel constant velocity.
Velocity is the slope of a displacement graph $v=\Delta x / \Delta t$ and the area under an acceleration graph $\Delta v=a \Delta t$.

Gravity pulls towards the center of mass.

$$
F_{g-f a r}=-\frac{G m_{1} m_{2}}{r^{2}} \quad U_{g-f a r}=-\frac{G m_{1} m_{2}}{r}
$$

If you are close enough to the sphere that it appears to be flat.

$$
F_{g-\text { near }}=m g \quad U_{g \text {-near }}=m g h
$$

Gravitational orbits are elliptical, but for AP calculations are assumed to be circles.
$x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \leftarrow$ constant acceleration meters $=m$
Displacement is the straight line separation from the start point to the end points. (vector) Distance is the total mileage traveled. When a runner completes one loop around a track oval displacement $=0$, but distance $=400 \mathrm{~m}$.
Displacement is the area under velocity vs. time graph.. $\Delta v=a \Delta t$

$$
\begin{aligned}
& K E_{f}+P E_{f}=E_{\text {Kinetic }}=K E_{i}+P E_{i} \\
& \frac{1}{2} m v^{2}+m g h=\frac{1}{2} m v_{o}^{2}+m g h_{o} \\
& v^{2}=v_{o}^{2}+2 a(\Delta x)
\end{aligned}
$$

Energy is a scalar, opposite directions add up.
In Elastic Collisions (no heat, sound, deformation, etc.) total kinetic energy is conserved, ie. atomic collisions, perfect spring, perfect bouncy-ball, perfect pool balls, etc.
$a_{c}=\frac{v^{2}}{r} F_{c}=m a_{c}=m \frac{v^{2}}{r}$ has harmonic motion

Centripetal force bends a straight path into a circle. It is always a pull towards the center (ie. tension in a string, friction on race track, magnetism, gravity or electric orbits, etc..

$$
W=\text { Energy }=F \Delta x \cos \theta=F_{11} \Delta x
$$

$$
k g \frac{m}{s^{2}} \bullet m=N \bullet m=\text { Newton } \bullet \text { meters }
$$

Work is energy a force puts into or takes out of an object. Only forces in the direction of motion add/subtract energy. When Net Work is positive, internal energy increases (usually kinetic energy). When tension lifts an elevator at a constant velocity, the work done by the cable is balanced with the work done by gravity $\mathrm{W}_{\mathrm{Net}}=0$.

Gravity

Work vs. Net Work

Velocity vs.
 Speed

Centripetal
Force and
Acceleration

Conservation of Kinetic Energy

Acceleration
Displacement vs. Distance

